AUDIO

Audio Engineering Society

Convention e-Brief 301

\ "4

Presented at the 1415t Convention

2016 September 29 — October 2, Los Angeles, CA, USA

This Engineering Brief was selected on the basis of a submitted synopsis. The author is solely responsible for its presentation,
and the AES takes no responsibility for the contents. All rights reserved. Reproduction of this paper, or any portion thereof, is
not permitted without direct permission from the Audio Engineering Society.

JSAP: A Plugin Standard for the Web Audio API with

Intelligent Functionality

Nicholas Jillings!, Yonghao Wang', Joshua Reiss?, and Ryan Stables!

I Digital Media Technology Lab, Birmingham City University, Birmingham, UK
2 Centre for Digital Music, Queen Mary University of London, London, UK

Correspondence should be addressed to Nicholas Jillings (nicholas.jillings@mail.bcu.ac.uk)

ABSTRACT

In digital audio, software plugins are commonly used to implement audio effects and synthesizers, and integrate
them with existing software packages. Whilst these plugins have a number of clearly defined formats, a common
standard has not been developed for the web, utilising the Web Audio API. In this paper, we present a standard
framework which defines the plugin structure and host integration of a plugin. The project facilitates a novel
method of cross-adaptive processing where features are transmitted between plugin instances instead of audio
routing, saving on multiple calculations of features. The format also enables communication and processing of
semantic data with a host server for the collection and utilisation of the data to facilitate intelligent music production

decisions.

1 Introduction

The Web Audio API, introduced by the World Wide
Web Consortium’s (W3C) HTML 5, defines a cross-
browser interface for building real time audio process-
ing, controlled by the JavaScript environment [1]. It
is supported on every major browser! and has led to
a wide range of web applications being developed to
leverage the new flexibility. These include playable
additive synthesisers [2], an interactive music player
based on MPEG-A [3] to digital audio workstationsZ.

The Web Audio API eXtension (WAAX)[4] proposes a
method for building audio effects along with Tuna®. In

! At time of writing, only Opera Mini is not supported, see ht tp:
//caniuse.com/#feat=audio-api

2Soundtrap uses the Web Audio API, available at https://
www . soundtrap.com/

3 Available at https: //github.com/Theodeus/tuna

both cases audio effects are loaded by a loading mech-
anism and are built using an internal constructor. They
also use a method of control which, whilst in keeping
with the Web Audio API, make it difficult for an appli-
cation to understand the parameters without explicitly
knowing the effect. Web Audio Modules (WAM) [5]
attempt to define a more robust environment, similar
to traditional desktop plugins by separating the audio
processor and controller. However this assumes that the
entire processing chain is a customisable script to be
called, rather than using the available low-level audio
nodes.

In this paper we introduce a new plugin format specifi-
cally defining both the plugin and the host requirements.
We introduce the core modules for building, deploying
and interacting with plugins. The paper also describes
the intelligent and semantic aspects attached to the en-
vironment to aid Intelligent Music Production (IMP).



Jillings et al

JSAP: Intelligent Web Audio plugin standard

2 Architecture

The core modules of the standard are the Base Plugin
and the Plugin Factory. These define the host inter-
face and the plugin structure respectively. The Base
Plugin wraps up an audio graph within its object pro-
totype, enabling multiple instances of the same design
to be repeated with ease. The Plugin Factory enables
advanced host side interaction including multi-track
support, semantic interaction and feature sharing.

2.1 Base Plugins

The Web Audio API enables the design of complex
processing chains, where the individual audio proces-
sors are linked together to form an audio graph from
source nodes to the audio output of the device. The
graph is built in JavaScript and simply holds a reference
to the lower-level processors to send in audio control
parameters, configure the routing and control playback.
Therefore it is easy to prototype this graph and store
the steps to build such a graph in an object prototype
(constructor).

// First we create the web audio API

gain node
var gain = this.context.createGain();

// We have only one input and one output
, which is the gain node:

_inputList[0] = gain;
_outputList[0] = gain;
// Next we must create the parameter,

again there is only one:
"

var gainParam = new PluginParameter (1,

Number", "Volume", 0, 2, this);
// This creates a parameter called
Volume, which uses a real number, an

acceptable range of 0 to 2 and
defaults at 1
gainParam.bindToAudioParam(gain.gain);
// We have bound the parameter to the
web audio gain node parameter gain.

// We can add the gainParam to the
parameter list presented to the
plugin by:

_parameters.push (gainParam) ;

Listing 1: Extract of volume plugin showing gain node
creation, connection and parameters

The sub-graph is a term used to describe the prototype
audio graph held by the prototype object. For instance,
a 3 band parametric equaliser may use three BiquadFil-
terNodes together with an input and output gain node.

This will give three, parametric EQ’s on variable bands
for use. In the example given in listing 1, where a sin-
gle gain node is being created, the sub-graph is simply
that one node.

The plugin must also define the input and output points
of the sub-graph. Each plugin can have multiple in-
put and output points but must have at least one of
each. These can feed either audio elements or pa-
rameters through conversion functions. In listing 1,
these are shown as _inputList [0] = gain; and

_outputList[0] = gain;.

Each plugin instance reports its current inputs and out-
puts by calling the getters inputs and outputs re-
spectively, returning an array of the inputs and output
nodes. By default, the plugin chain will always connect
to and from the inputs and outputs at index zero. To
ease integration with other audio elements, it defines a
new prototype function bound onto every AudioNode
called get Inputs () which returns the first audio
input. On normal web audio nodes it simply returns
itself, creating a safe way of linking nodes easily.

The main interaction with plugins is through their pa-
rameters, providing bounded inputs mapped onto audio
effects. Parameters are generated through the PluginPa-
rameter. The created object defines the initial value, the
data type (Number, Text, Boolean or Event), parameter
name, minimum and maximum values. Listing 1 shows
the parameter gainParam being created, with a de-
fault value of 1, of type "Number", called "Volume"
with an inclusive range of 0 to 2. The parameters can
be bound directly to an AudioNode’s own AudioParam
object. For instance, the web audio gain node has one
AudioParam object: gain. By binding it directly onto
an AudioParam, any interactions are immediately trans-
lated to the node.

2.2 Plugin Factory

The host is defined to ensure as seamless an integration
as possible into projects. The PluginFactory holds the
prototype objects for creation into an audio chain as
well as providing a single point of reference for the rest
of the application. The plugin instances are inserted
into a chain, as found in traditional DAW environments.
These individual chains are managed by SubFactories,
where each SubFactory on creation is given it’s start and
stop nodes for the chain. In an empty chain (as when
first initiated) the two nodes are directly connected.

AES 1415t Convention, Los Angeles, CA, USA, 2016 September 29 — October 2
Page 2 of 5



Jillings et al

JSAP: Intelligent Web Audio plugin standard

When a plugin is created it is placed into the chain and
connected between the start and stop nodes. Individual
plugin instances can be moved around within the chain,
destroyed or moved to other SubFactories.

The PluginFactory also provides links to data stores,
either for data collection or requesting. In doing so
it enables plugins to directly communicate with con-
nected web and semantic web databases. This will be
discussed further in section 4. The factory also man-
ages inter-plugin communications, enabling complex
cross-adaptive processing by feature-driven modula-
tion. This is discussed further in section 3.

2.3 Host Requirements

All the parameters generated by the plugins are acces-
sible by calling getParameters () which returns
an object with the parameter values (name, data type,
value and range). This defined object enables the auto-
matic generation of Graphical User Interface (GUI) for
the parameters, matching the style or constraints of the
host.

Each plugin can also generate a HTML structure to
present a customised GUI , instead of the host auto-
mated interface. This can support more complex ele-
ments including feedback as well as branding or other
graphical elements. Non parametrised items can also
be represented, such as frequency response maps or
meters. If the custom HTML GUI is not supported,
then the host must automatically generate a suitable
interface.

3 Cross-Adaptive processing

Cross-adaptive audio effects are a class of audio ef-
fect, in which a plugin’s instantaneous parameter value
is determined by another audio signal’s features [6],
whilst auto-adaptive effects use the same audio [7].
Early cross-adaptive effects used analog processing to
control the volume of microphones in a conference en-
vironment [8]. Modern systems use similar methods for
real-time or live environment processing, including [9]
and [10], using a dedicated audio signal for determin-
ing the venue loudness and mix features. In [11], [12],
[13] and [14] the audio features are derived from the
incoming channels and fed into a computation engine
without using an external signal and can be considered
a multi-channel auto-adaptive effect.

All of these processors begin by extracting certain fea-
tures from the audio stream(s) to determine the internal
processing. By routing audio to the individual plugins
there is the potential for the same feature to be pro-
cessed multiple times. For instance if channel 0 and
channel 1 both require the mean of channel 2, tradition-
ally the audio is routed from 2 to both channels 0 and 1,
then both channels calculate the mean. This wastes re-
sources as the same feature is calculated twice. Instead
the plugin instances request for certain features from a
different plugin. The requested features are calculated
for each audio frame and returned to the PluginFactory
which dispatches the features to the plugins. There-
fore there are no redundant calculations of features, nor
are there extra routing paths to maintain. Using this
method does incur a latency in the processing, since
the features extracted may not directly map frame-for-
frame from the external source to the internal source
due to its asynchronous nature. This difference must be
accounted for, preferably without inducing any further
in-line delays.

Feature extraction is performed in real-time using JS-
Xtract [15]. This library uses the Web Audio API anal-
yser node to extract the time and frequency domain
information from an audio stream. It supports a wide
range of features and automatically generates the ob-
jects to transfer. the library is written in a modular
format, making it extensible and easy to contribute cus-
tom features. In JASP, designing auto-adaptive effects
is possible by querying the previous plugin for features
and using them internally, or placing an AnalyserNode
inside the plugin sub-graph.

4 Semantic Interaction

Several ontologies have been created specifically for
the audio field including the music ontology [16], stu-
dio ontology [17] and audio effects ontology [18]. By
using these ontologies to describe the audio production
process from inception (studio ontology) to distribu-
tion (music ontology), it is possible to create complex
services by scanning databases which support these
ontologies. [19] extends the music ontology to link the
music performed to the location, date and details of the
performers. [20] define an audio plugin recommenda-
tion service by collecting information of the transforms
and types of plugins to help an end user find a suitable
plugin.

AES 1415t Convention, Los Angeles, CA, USA, 2016 September 29 — October 2
Page 3 of 5



Jillings et al

JSAP: Intelligent Web Audio plugin standard

[21] use semantic data to hold the data gathered from
their plugins including the parameter state, audio fea-
tures of the input and output signals, instrument applied
to, descriptive terms ("warm" or "bright") and informa-
tion regarding the engineer using the plugin. By using
this extensive dataset it has been possible to generate
more intuitive plugins. [22] uses these collected fea-
tures terms to build a novel equaliser effect where users
navigate a 2D plane, referring to two terms, allowing
the ability to find settings between terms.

The PluginFactory can be fed global semantic informa-
tion about the session such as tempo, sample rate and
any user or personal information. The SubFactory are
fed track specific terms such as the instrument used,
where the audio events occur, which channels it feeds
or is fed from. Most of these are described using the
studio, event and timeline ontologies. Each Plugin it-
self is given both the global and its owner (SubFactory)
semantic terms to operate with. By doing this each
plugin can communicate with its own semantic store,
enabling a decentralsied semantic web [23]. The plu-
gins can automatically generate linked-data represen-
tations of themselves, such as the parameter controls,
current states, presets and audio transforms for easy
transmission into a data store. The system transmits
both JSON-LD or RDF/XML.

5 Deployment & Use Cases

The code is self-contained in a single javascript
file, holding all constructors for the PluginFactory,
SubFactory and the Base Plugin prototype func-
tions. The repository also contains several exam-
ple plugins for building your own with extensive
comment sections. The repository can be down-

loaded from http://www.semanticaudio.co.

uk/ jsap/ along with examples and documentation.

A first use-case of the plugin standard converts three
of the SAFE plugins [21], the equaliser, compressor
and overdrive, into JSAP instances. Currently the site*
enables the user to drop an example audio file onto
the page for listening and browse the semantic terms
associated with the plugin to load the associated pa-
rameters. These plugins will be used to extend the
SAFE dataset further by gaining more participants and
targetted collection of terms.

4 Available at
nickjillings/safe-7js/

http://dmtlab.bcu.ac.uk/

6 Conclusion

This engineering brief has introduced an audio plu-
gin standard for building semantically linked audio
plugins for the web. The standard eases integration
and building of ’sub-graphs’ holding prototype audio
graphs built on the web audio API [1]. The standard
introduces a novel way of moving features instead of
audio streams in the host for building intelligent audio
processors. The holding plugin factory also connects
the plugins to the host semantically for bidirectional
data exchange of semantic information.

References

[1] Adenot, P. and Wilson, C., “Web audio API,”
2013.

[2] Teaford, L., “Designing Synthesizers with Web
Audio,” in J. Freeman, A. Lerch, and M. Paradis,
editors, Proceedings of the 2nd Web Audio Con-
ference (WAC-2016), Atlanta, GA, USA, 2016.

[3] Herrero, G., Kudumakis, P., Tardén, L. J., Bar-
bancho, 1., and Sandler, M., “An html5 interactive
(mpeg-a im af) music player,” in Proceedings of
the 10th International Symposium on Computer
Music Multidisciplinary Research (CMMR), Mar-
seille, France, pp. 15-18, 2013.

[4] Choi, H. and Berger, J., “WAAX: Web Audio API
eXtension.” in NIME, pp. 499-502, 2013.

[5] Kleimola, J. and Larkin, O., “Web Audio Mod-
ules,” in Proceedings of the Sound and Music
Computing 2015, 2015.

[6] Reiss, J. D., “Intelligent systems for mixing mul-
tichannel audio,” in 2011 17th International Con-
ference on Digital Signal Processing (DSP), pp.
1-6, IEEE, 2011.

[7] Verfaille, V., Zolzer, U., and Arfib, D., “Adaptive
digital audio effects (A-DAFx): A new class of
sound transformations,” /IEEE Transactions on
audio, speech, and language processing, 14(5),
pp- 1817-1831, 2006.

[8] Dugan, D., “Automatic microphone mixing,’
Journal of the Audio Engineering Society, 23(6),
pp. 442449, 1975.

AES 1415t Convention, Los Angeles, CA, USA, 2016 September 29 — October 2
Page 4 of 5



Jillings et al

JSAP: Intelligent Web Audio plugin standard

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Perez-Gonzalez, E. and Reiss, J., “Automatic mix-
ing: live downmixing stereo panner,” in Proceed-
ings of the 7th International Conference on Digi-
tal Audio Effects (DAFx’07), pp. 63—-68, Bordeux,
France, 2007.

Perez-Gonzalez, E. and Reiss, J., “Automatic gain
and fader control for live mixing,” in IEEE Work-
shop on applications of signal processing to au-
dio and acoustics, pp. 1-4, New Paltz, NY, USA,
2009.

Clifford, A. and Reiss, J., “Calculating time de-
lays of multiple active sources in live sound,” in
Audio Engineering Society Convention 129, Au-
dio Engineering Society, 2010.

Jillings, N., Clifford, A., and Reiss, J. D., “Per-
formance optimization of GCC-PHAT for delay
and polarity correction under real world condi-
tions,” in Audio Engineering Society Convention
134, Audio Engineering Society, 2013.

Maddams, J. A., Finn, S., and Reiss, J. D., “An au-
tonomous method for multi-track dynamic range
compression,” in Proceedings of the 15th Interna-
tional Conference on Digital Audio Effects (DAFx-
12),2012.

Terrell, M., Reiss, J. D., and Sandler, M., “Auto-
matic noise gate settings for drum recordings con-
taining bleed from secondary sources,” EURASIP

Journal on Advances in Signal Processing, 2010,
p- 10, 2010.

Jillings, N., Bullock, J., and Stables, R., “JS-
Xtract: A Realtime audio feature extraction li-
brary for the web,” in International Society for
Music Information Retrieval Conference, 2016.

Raimond, Y., Abdallah, S. A., Sandler, M. B.,
and Giasson, F., “The Music Ontology.” in ISMIR,
volume 422, Citeseer, 2007.

Fazekas, G. and Sandler, M. B., “The Studio On-
tology Framework.” in ISMIR, pp. 471-476, 2011.

Wilmering, T., Fazekas, G., and Sandler, M. B.,
“The Audio Effects Ontology.” in ISMIR, pp. 215—
220, 2013.

Shaw, R., Troncy, R., and Hardman, L., “Lode:
Linking open descriptions of events,” in Asian

(20]

(21]

(22]

(23]

Semantic Web Conference, pp. 153—167, Springer,
2009.

Wilmering, T., Fazekas, G., Allik, A., and Sandler,
M. B., “Audio Effects Data on the Semantic Web,”
in Audio Engineering Society Convention 139,
Audio Engineering Society, 2015.

Stables, R., Enderby, S., De Man, B., Fazekas, G.,
and Reiss, J., “SAFE: A system for the extraction
and retrieval of semantic audio descriptors,” in
15th International Society for Music Information
Retrieval Conference (ISMIR 2014), 2014.

Stasis, S., Stables, R., and Hockman, J., “A model
for adaptive reduced-dimensionality equalisation,”
in Proceedings of the 18th International Confer-
ence on Digital Audio Effects, Trondheim, Nor-
way, volume 30, 2015.

Berners-Lee, T., Hendler, J., Lassila, O., et al.,
“The semantic web,” Scientific american, 284(5),
pp. 28-37, 2001.

AES 1415t Convention, Los Angeles, CA, USA, 2016 September 29 — October 2
Page 5 of 5



